论文标题
VGAI:基于视力的分散控制器的机器人群的端到端学习
VGAI: End-to-End Learning of Vision-Based Decentralized Controllers for Robot Swarms
论文作者
论文摘要
机器人群的分散协调需要解决当地的看法和行动之间的紧张关系,以及实现全球目标的张力。在这项工作中,我们建议基于原始视觉输入来学习分散的控制器。首次在一个端到端框架中整合了两个关键组成部分的学习:交流和视觉感知。更具体地说,我们认为每个机器人都可以访问对周围环境的视觉感知,以及从其他相邻机器人传输和接收消息的通信功能。我们提出的学习框架结合了每个机器人从视觉输入中提取消息的卷积神经网络(CNN),并在整个群体上提取图形神经网络(GNN),以传输,接收和处理这些消息以决定操作。 GNN和局部运行的CNN的使用自然会在分散的控制器中产生。我们共同训练CNN和GNN,以便每个机器人都学会从整个团队的图像中提取信息。我们的实验证明了无人机植入问题的拟议结构,并显示了其有前途的性能和可伸缩性,例如,为大型群体提供了由多达75个无人机组成的大型群体成功的分散羊群。
Decentralized coordination of a robot swarm requires addressing the tension between local perceptions and actions, and the accomplishment of a global objective. In this work, we propose to learn decentralized controllers based on solely raw visual inputs. For the first time, that integrates the learning of two key components: communication and visual perception, in one end-to-end framework. More specifically, we consider that each robot has access to a visual perception of the immediate surroundings, and communication capabilities to transmit and receive messages from other neighboring robots. Our proposed learning framework combines a convolutional neural network (CNN) for each robot to extract messages from the visual inputs, and a graph neural network (GNN) over the entire swarm to transmit, receive and process these messages in order to decide on actions. The use of a GNN and locally-run CNNs results naturally in a decentralized controller. We jointly train the CNNs and the GNN so that each robot learns to extract messages from the images that are adequate for the team as a whole. Our experiments demonstrate the proposed architecture in the problem of drone flocking and show its promising performance and scalability, e.g., achieving successful decentralized flocking for large-sized swarms consisting of up to 75 drones.