论文标题

相互耦合的托马斯振荡器的集体运动:空间分离的旋转运动和涡流扩散

Collective motion of mutually coupled Thomas Oscillators: Spatially Separated Swirling Motion and Eddy Diffusion

论文作者

Vijayan, Vinesh, Ganguli, Biplab

论文摘要

在这封信中,我们报告了一项关于在动态环境中与线性/非线性耦合的两个相互耦合托马斯振荡器的集体动力学的数值研究。我们声称我们的模型计算可以解释相互作用粒子在流体中的扩散。在普通的流体中,颗粒之间的频繁动量转移可以使颗粒与相关时间行为一起移动。 The diffusion of interacting particles in a dynamic environment like this is a nonequilibrium phenomenon and is similar to the observed transient chaotic dynamics in the model.对动力学和同步性质的性质的详细研究表明,对于系统参数的两个定性方式,耦合系统通过瞬态混乱的间隔在变成混乱或限制周期吸引子之前经过瞬态混乱的间隔。线性扩散耦合等效于弱动量转移,导致常规动力学和同步。正弦非线性耦合,谐波动量转移会产生异常的动力学特征。当吸引子是混乱或不稳定的瞬态吸引子时,同步的性质是完整的(定向运动)。相反,它是限制周期的滞后,抗滞后或空间滞后。在这种情况下,扩散是由于颗粒踩踏板和涡流运动在瞬时混乱的顶部引起的。同样,状态空间中两个颗粒的轨迹类似于手性现象。

In this letter, we report a numerical study on the collective dynamics of two mutually coupled Thomas oscillators with linear/nonlinear coupling in a dynamic environment. We claim our model calculations can explain the diffusion of interacting particles in a fluid. In an ordinary fluid, frequent momentum transfer between particles keeps the particles in a fluid moving together with correlated time behaviour. The diffusion of interacting particles in a dynamic environment like this is a nonequilibrium phenomenon and is similar to the observed transient chaotic dynamics in the model. The detailed study of the nature of dynamics and synchronization reveals that, for two qualitatively different regimes of system parameters, the coupled system passes through an interval of transient chaos before it settles into a chaotic or limit cycle attractor. The linear diffusive coupling is equivalent to weak momentum transfer, leading to conventional dynamics and synchronization. The sinusoidal nonlinear coupling, harmonic momentum transfer, produces exceptional dynamical features. The nature of synchronization is complete(directed motion) when the attractor is chaotic or an unstable transient attractor. In contrast, it is either lag, anti-lag, or space lag for a limit cycle. In such situations, the diffusion is due to particles pedalling and eddy/swirling motion on top of translatory motion via transient chaos. Also, the trajectories of the two particles in the state space resemble a Chiral Phenomenon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源