论文标题
稳定相对论流体在空位上具有非加速膨胀
Stabilizing relativistic fluids on spacetimes with non-accelerated expansion
论文作者
论文摘要
We establish global regularity and stability for the irrotational relativistic Euler equations with equation of state $\overline{p}=K\overlineρ$, where $0<K<1/3$, for small initial data in the expanding direction of FLRW spacetimes of the form $(\mathbb R\times\mathbb t^3,-d \ tb^2+\ tb^2δ_{ij} dx^i dx^j)$。这提供了第一种通过时空膨胀的非盘流体稳定稳定的案例,而膨胀速率是功率定律类型但没有加速的情况。尤其是,反向比例因子的时间积分差异为$ t \ rightarrow \ infty $。
We establish global regularity and stability for the irrotational relativistic Euler equations with equation of state $\overline{p}=K\overlineρ$, where $0<K<1/3$, for small initial data in the expanding direction of FLRW spacetimes of the form $(\mathbb R\times\mathbb T^3,-d\tb^2+\tb^2δ_{ij} dx^i dx^j)$. This provides the first case of non-dust fluid stabilization by spacetime expansion where the expansion rate is of power law type but non-accelerated. In particular, the time integral of the inverse scale factor diverges as $t\rightarrow\infty$.