论文标题
目标引导的开放域对话的动态知识路由网络
Dynamic Knowledge Routing Network For Target-Guided Open-Domain Conversation
论文作者
论文摘要
目标指导的开放域对话旨在主动自然地指导对话代理或人类在开放式对话中实现特定的目标,主题或关键词。现有方法主要依赖于单转数数据和简单的目标指导策略,而无需考虑候选主题/关键字之间的语义或事实知识关系。这导致过渡平稳性和成功率低。在这项工作中,我们采用了一种结构化的方法,该方法通过引入粗粒粒度的关键字来控制系统响应的预期内容,通过候选关键词之间的转向级别的监督学习和知识关系,实现平稳的对话过渡,并通过讨论级别的指定级别的对话,并将对话朝向指定的目标。特别是,我们提出了一个新颖的动态知识路由网络(DKRN),该网络考虑了候选关键词之间的语义知识关系,以准确下一个话题的下一个主题预测。借助更准确的关键字预测,我们的关键字射击检索模块可以实现更好的检索性能和更有意义的对话。此外,我们还提出了一种新颖的双重话语级目标指导策略,以指导对话以更高的成功率平稳地实现目标。此外,为了推动目标引导的开放域对话的研究边界以更好地匹配现实世界的方案,我们引入了一种新的大型中国目标引导的开放域对话数据集(超过900k的对话),从Sina Weibo爬了出来。定量和人类评估表明,我们的方法可以产生有意义的有效目标引导的对话,从而显着改善了其他最新方法的成功率超过20%,平均平滑度得分超过0.6。
Target-guided open-domain conversation aims to proactively and naturally guide a dialogue agent or human to achieve specific goals, topics or keywords during open-ended conversations. Existing methods mainly rely on single-turn datadriven learning and simple target-guided strategy without considering semantic or factual knowledge relations among candidate topics/keywords. This results in poor transition smoothness and low success rate. In this work, we adopt a structured approach that controls the intended content of system responses by introducing coarse-grained keywords, attains smooth conversation transition through turn-level supervised learning and knowledge relations between candidate keywords, and drives an conversation towards an specified target with discourse-level guiding strategy. Specially, we propose a novel dynamic knowledge routing network (DKRN) which considers semantic knowledge relations among candidate keywords for accurate next topic prediction of next discourse. With the help of more accurate keyword prediction, our keyword-augmented response retrieval module can achieve better retrieval performance and more meaningful conversations. Besides, we also propose a novel dual discourse-level target-guided strategy to guide conversations to reach their goals smoothly with higher success rate. Furthermore, to push the research boundary of target-guided open-domain conversation to match real-world scenarios better, we introduce a new large-scale Chinese target-guided open-domain conversation dataset (more than 900K conversations) crawled from Sina Weibo. Quantitative and human evaluations show our method can produce meaningful and effective target-guided conversations, significantly improving over other state-of-the-art methods by more than 20% in success rate and more than 0.6 in average smoothness score.