论文标题

相对论耦合聚类水平上的超细结构常数与相关的不确定性

Hyperfine structure constants on the relativistic coupled cluster level with associated uncertainties

论文作者

Haase, Pi A. B., Eliav, Ephraim, Iliaš, Miroslav, Borschevsky, Anastasia

论文摘要

超细结构(HFS)常数的准确预测在化学和物理学的许多领域都很重要,从确定核电和磁矩到新理论方法的基准测试。我们介绍了对使用有限场方案计算HFS常数的相对论耦合群集方法的性能的详细研究。选定的两个测试系统是$^{133} $ CS和$^{137} $ baf。已经特别注意基于基于集合,电子相关和相对论效应的研究构建理论不确定性估计。对不确定性估计的最大贡献来自高阶相关贡献。我们对计算出的HFS常数的保守不确定性估计为$ \ sim $ 5.5 \%,而在所有情况下,我们与实验值的实际偏差为$ <1 $ \%。

Accurate predictions of hyperfine structure (HFS) constants are important in many areas of chemistry and physics, from the determination of nuclear electric and magnetic moments to benchmarking of new theoretical methods. We present a detailed investigation of the performance of the relativistic coupled cluster method for calculating HFS constants withing the finite-field scheme. The two selected test systems are $^{133}$Cs and $^{137}$BaF. Special attention has been paid to construct a theoretical uncertainty estimate based on investigations on basis set, electron correlation and relativistic effects. The largest contribution to the uncertainty estimate comes from higher order correlation contributions. Our conservative uncertainty estimate for the calculated HFS constants is $\sim$ 5.5\%, while the actual deviation of our results from experimental values was $<1$\% in all cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源