论文标题
théoriedeforçageDeshoméomorthismesde Surface [D'AprèsLeCalvez et tal]
Théorie de forçage des homéomorphismes de surface [d'après Le Calvez et Tal]
论文作者
论文摘要
1912年,布鲁维尔(Brouwer)发表了他的翻译定理,例如,这意味着保留具有周期点的飞机同态同态的方向也有一个固定点。该定理引起了许多发展,导致了Le Calvez的证明,证明存在Brouwer Foliation用于表面同构身份的同态同态。最近,Le Calvez和Tal使用了这种叶子来构建一种迫使理论本质上的拓扑结构,就像Brouwer的定理一样,它可以从同质形态的某些动态特性中推断出新轨道的存在。展览{é}将描述该理论的一般原则及其许多应用中的一些。
In 1912 Brouwer published his translation theorem, which implies, for example, that an orientation preserving homeomorphism of the plane having a periodic point also has a fixed point. This theorem has given rise to a number of developments, leading among other things to Le Calvez's proof of the existence of a Brouwer foliation for surface homeomorphisms homotopic to identity. Recently, Le Calvez and Tal used this foliation to construct a forcing theory intrinsically topological which, like Brouwer's theorem, allows to deduce the existence of new orbits from certain dynamic properties of homeomorphism. The expos{é} will describe the general principles of this theory, as well as some of its many applications.