论文标题
泰勒(Taylor)系列的拉格朗日剩余时间,区分$ \ Mathcal {o}(f(x))$与多项式的时间复杂性
The Lagrangian remainder of Taylor's series, distinguishes $\mathcal{O}(f(x))$ time complexities to polynomials or not
论文作者
论文摘要
这封信的目的是研究截短的泰勒系列的时间复杂性后果,称为泰勒多项式\ cite {bakas2019taylor,katsoprinakis2011,nestoridis2011}。特别是,证明了$ \ mathbf {p = np} $ equality的检查与确定特定解决方案的$ n^{th} $导数是否有界相关联。因此,在某些情况下,这是不正确的,因此通常。
The purpose of this letter is to investigate the time complexity consequences of the truncated Taylor series, known as Taylor Polynomials \cite{bakas2019taylor,Katsoprinakis2011,Nestoridis2011}. In particular, it is demonstrated that the examination of the $\mathbf{P=NP}$ equality, is associated with the determination of whether the $n^{th}$ derivative of a particular solution is bounded or not. Accordingly, in some cases, this is not true, and hence in general.