论文标题

C-dlinknet:考虑人类解析的多级语义特征

C-DLinkNet: considering multi-level semantic features for human parsing

论文作者

Lu, Yu, Feng, Muyan, Wu, Ming, Zhang, Chuang

论文摘要

人解析是语义分割的重要分支,这是一项精细的语义分割任务,旨在识别人类的组成部分。人解析的挑战是提取有效的语义特征,以解决变形和多尺度变化。在这项工作中,我们提出了一个基于linknet的端到端模型,该模型包含一个名为“平滑模块”的新模块,以在解码器部分中将多级特征组合在一起。与最先进的方法相比,C-DLINKNET能够产生竞争性解析性能,该方法具有较小的输入大小,没有其他信息,即在LIP数据集的验证集中实现MIOU = 53.05。

Human parsing is an essential branch of semantic segmentation, which is a fine-grained semantic segmentation task to identify the constituent parts of human. The challenge of human parsing is to extract effective semantic features to resolve deformation and multi-scale variations. In this work, we proposed an end-to-end model called C-DLinkNet based on LinkNet, which contains a new module named Smooth Module to combine the multi-level features in Decoder part. C-DLinkNet is capable of producing competitive parsing performance compared with the state-of-the-art methods with smaller input sizes and no additional information, i.e., achiving mIoU=53.05 on the validation set of LIP dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源