论文标题
从多个图上的信号中确切的盲目社区检测
Exact Blind Community Detection from Signals on Multiple Graphs
论文作者
论文摘要
在图形上支持的网络和数据已在科学和工程中无处不在。本文研究了“盲人”社区检测问题,我们试图推断图形模型的社区结构,因为在一组连接未知的节点上观察了独立的图形信号。我们将每个观察结果建模为过滤的白噪声,其中下面的网络结构随着每个观察结果而变化。这些不同的网络结构被建模为对潜在种植分区模型(PPM)的独立实现,证明了我们对所有观察结果持续存在的基本社区结构的假设。在图形过滤器和PPM参数上的某些条件下,我们提出了用于确定(i)潜在社区数量和(ii)PPM的相关分区的算法。然后,我们证明在渐近和非反应抽样案例中获得统计保证。关于真实和合成数据的数值实验证明了我们算法的功效。
Networks and data supported on graphs have become ubiquitous in the sciences and engineering. This paper studies the 'blind' community detection problem, where we seek to infer the community structure of a graph model given the observation of independent graph signals on a set of nodes whose connections are unknown. We model each observation as filtered white noise, where the underlying network structure varies with every observation. These varying network structures are modeled as independent realizations of a latent planted partition model (PPM), justifying our assumption of a constant underlying community structure over all observations. Under certain conditions on the graph filter and PPM parameters, we propose algorithms for determining (i) the number of latent communities and (ii) the associated partitions of the PPM. We then prove statistical guarantees in the asymptotic and non-asymptotic sampling cases. Numerical experiments on real and synthetic data demonstrate the efficacy of our algorithms.