论文标题
Zheghalkin-Boolean演算
Zheghalkin-Boolean Calculus
论文作者
论文摘要
在切换电路,错误校正代码等的上下文中,布尔微积分已被广泛研究。这项工作概括了定义布尔函数的差分表明的几种方法。通过使用Zhegalkin代数(即代数正常形式),提出了布尔微积分的统一理论,并具有K形式和整合,并在stokes样定理中用于布尔函数。
Boolean calculus has been studied extensively in the past in the context of switching circuits, error-correcting codes etc. This work generalizes several approaches to defining a differential calculus for Boolean functions. A unified theory of Boolean calculus, complete with k-forms and integration, is presented through the use of Zhegalkin algebras (i.e., algebraic normal forms), culminating in a Stokes-like theorem for Boolean functions.