论文标题
CAHPHF:通过混合过滤的上下文感知层次结构QoS预测
CAHPHF: Context-Aware Hierarchical QoS Prediction with Hybrid Filtering
论文作者
论文摘要
随着互联网服务范围内的Web服务数量的持续增长的泛滥,服务的建议已成为当今的挑战。影响服务建议的主要方面之一是服务质量(QoS)参数,该参数描述了Web服务的性能。通常,服务提供商提供服务部署期间QoS参数的价值。但是,实际上,服务的QoS值在不同的用户,时间,位置等之间各不相同。因此,在执行之前估算服务的QoS值是一项重要任务,因此,QoS预测已引起了重大的研究关注。文献中可以使用多种方法来预测服务QoS。但是,这些方法尚未达到所需的精度水平。在本文中,我们研究了不同用户的QoS预测问题,并通过考虑服务和用户的上下文信息来提出一种新颖的解决方案。我们的建议包括两个关键步骤:(a)混合过滤和(b)分层预测机制。一方面,混合过滤方法旨在获得一组类似的用户和服务,给定目标用户和服务。另一方面,层次预测机制的目的是通过利用层次神经回归来准确估计QoS值。我们在公开可用的WS-Dream数据集上评估了我们的框架。实验结果表明,我们的框架比主要最新方法的表现要出色。
With the proliferation of Internet-of-Things and continuous growth in the number of web services at the Internet-scale, the service recommendation is becoming a challenge nowadays. One of the prime aspects influencing the service recommendation is the Quality-of-Service (QoS) parameter, which depicts the performance of a web service. In general, the service provider furnishes the value of the QoS parameters during service deployment. However, in reality, the QoS values of service vary across different users, time, locations, etc. Therefore, estimating the QoS value of service before its execution is an important task, and thus the QoS prediction has gained significant research attention. Multiple approaches are available in the literature for predicting service QoS. However, these approaches are yet to reach the desired accuracy level. In this paper, we study the QoS prediction problem across different users, and propose a novel solution by taking into account the contextual information of both services and users. Our proposal includes two key steps: (a) hybrid filtering and (b) hierarchical prediction mechanism. On the one hand, the hybrid filtering method aims to obtain a set of similar users and services, given a target user and a service. On the other hand, the goal of the hierarchical prediction mechanism is to estimate the QoS value accurately by leveraging hierarchical neural-regression. We evaluate our framework on the publicly available WS-DREAM datasets. The experimental results show the outperformance of our framework over the major state-of-the-art approaches.