论文标题
在$ r $ - $ f_4 $ -ii上
On $R$-triviality of $F_4$-II
论文作者
论文摘要
在字段$ k $上定义的简单代数$ f_4 $类型是Albert代数超过$ K $的完整自动形态。让$ a $成为Albert代数,这是一个任意特征的字段$ K $。我们证明,$ a $的同位素$ a^{(v)} $使得$ \ text {\ bf aut}(a^{(v)})$是$ r $ - tovial,从人类的意义上讲。
Simple algebraic groups of type $F_4$ defined over a field $k$ are the full automorphism groups of Albert algebras over $k$. Let $A$ be an Albert algebra over a field $k$ of arbitrary characteristic. We prove that there is an isotope $A^{(v)}$ of $A$ such that the group $\text{\bf Aut}(A^{(v)})$ is $R$-trivial, in the sense of Manin.