论文标题

谐振热能转移到铁磁纳米层中的镁

Resonant thermal energy transfer to magnons in a ferromagnetic nanolayer

论文作者

Kobecki, Michal, Scherbakov, Alexey V., Linnik, Tetiana L., Kukhtaruk, Serhii M., Gusev, Vitalyi E., Pattnaik, Debi P., Akimov, Ilya A., Rushforth, Andrew W., Akimov, Andrey V., Bayer, Manfred

论文摘要

能源收集是一种现代概念,它通过将热能转移到其他激发中来使消散的热量有用。大多数现有的能源收集原理都是在连续加热的系统中实现的,例如在热电设备中产生直流电压。在这里,我们介绍了高频能量收集的概念,其中样品中的散热热激发了5 nm厚的铁磁金属层中的共振棒。该样品被飞秒激光脉冲激发,重复速率为10 GHz,从而在相同的频率下导致温度调节,幅度〜0.1K。在铁电磁纳米层中,交替的温度激发了通过测量净磁磁强化检测到的含量。当将镁频率带到光学激发上时,进动的振幅增加了12倍,表明从晶格到相干木蛋白的有效共振传热。所证明的原理可用于在GHz和Sub-Thz频率范围内运行的各种纳米版本中的能量收集。

Energy harvesting is a modern concept which makes dissipated heat useful by transferring thermal energy to other excitations. Most of the existing principles for energy harvesting are realized in systems which are heated continuously, for example generating DC voltage in thermoelectric devices. Here we present the concept of high-frequency energy harvesting where the dissipated heat in a sample excites resonant magnons in a 5-nm thick ferromagnetic metal layer. The sample is excited by femtosecond laser pulses with a repetition rate of 10 GHz which results in temperature modulation at the same frequency with amplitude ~0.1 K. The alternating temperature excites magnons in the ferromagnetic nanolayer which are detected by measuring the net magnetization precession. When the magnon frequency is brought onto resonance with the optical excitation, a 12-fold increase of the amplitude of precession indicates efficient resonant heat transfer from the lattice to coherent magnons. The demonstrated principle may be used for energy harvesting in various nanodevices operating at GHz and sub-THz frequency ranges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源