论文标题

等式的分辨率$(3^{x_1} -1)(3^{x_2} -1)=(5^{y_1} -1)(5^{y_2} -1)$

Resolution of the equation $(3^{x_1}-1)(3^{x_2}-1)=(5^{y_1}-1)(5^{y_2}-1)$

论文作者

Liptai, Kálmán, Németh, László, Soydan, Gökhan, Szalay, László

论文摘要

请考虑二聚体方程$(3^{x_1} -1)(3^{x_2} -1)=(5^{y_1} -1)(5^{y_2} -1)$ in积极整数中的$方程的每一侧分别是给定二进制复发的两个术语的产物。在本文中,我们证明标题方程的唯一解决方案是$(x_1,x_2,y_1,y_2)=(1,2,1,1)$。结果的主要新颖性是,我们允许双方两个术语。

Consider the diophantine equation $(3^{x_1}-1)(3^{x_2}-1)=(5^{y_1}-1)(5^{y_2}-1)$ in positive integers $x_1\le x_2$, and $y_1\le y_2$. Each side of the equation is a product of two terms of a given binary recurrence, respectively. In this paper, we prove that the only solution to the title equation is $(x_1,x_2,y_1,y_2)=(1,2,1,1)$. The main novelty of our result is that we allow products of two terms on both sides.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源