论文标题

绑架雷达:使用旋转不变的度量学习的拓扑雷达定位

Kidnapped Radar: Topological Radar Localisation using Rotationally-Invariant Metric Learning

论文作者

Săftescu, Ştefan, Gadd, Matthew, De Martini, Daniele, Barnes, Dan, Newman, Paul

论文摘要

本文介绍了使用频率调节连续波(FMCW)扫描雷达进行稳健,大规模拓扑定位的系统。我们学习了使用CNN嵌入极性雷达扫描的度量空间,传统上应用于视觉域。但是,我们根据圆柱卷积,抗异化性模糊和方位角的最大程度来调整特征提取,以使其更适合雷达扫描形成的极性。为了增强旋转不变性。然后,使用强制的度量空间来编码一个参考轨迹,该轨迹用作地图,该轨迹对最近的邻居(NNS)进行了查询,以识别运行时的位置。我们使用以雷达为重点的移动自主性数据集的最大重复进行,展示了我们的拓扑定位系统的性能,迄今为止,总计280 km的城市驾驶,我们还使用了一小部分来学习改良建筑的权重。由于这项工作代表了FMCW雷达的新应用,因此我们通过一组全面的指标分析了所提出方法的实用性,这些指标在现实系统中使用时可以深入了解疗效,即使面对随机的旋转扰动,也显示出对根体系结构的性能的提高。

This paper presents a system for robust, large-scale topological localisation using Frequency-Modulated Continuous-Wave (FMCW) scanning radar. We learn a metric space for embedding polar radar scans using CNN and NetVLAD architectures traditionally applied to the visual domain. However, we tailor the feature extraction for more suitability to the polar nature of radar scan formation using cylindrical convolutions, anti-aliasing blurring, and azimuth-wise max-pooling; all in order to bolster the rotational invariance. The enforced metric space is then used to encode a reference trajectory, serving as a map, which is queried for nearest neighbours (NNs) for recognition of places at run-time. We demonstrate the performance of our topological localisation system over the course of many repeat forays using the largest radar-focused mobile autonomy dataset released to date, totalling 280 km of urban driving, a small portion of which we also use to learn the weights of the modified architecture. As this work represents a novel application for FMCW radar, we analyse the utility of the proposed method via a comprehensive set of metrics which provide insight into the efficacy when used in a realistic system, showing improved performance over the root architecture even in the face of random rotational perturbation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源