论文标题

边缘计算中基于优先级的公平调度

Priority-based Fair Scheduling in Edge Computing

论文作者

Madej, Arkadiusz, Wang, Nan, Athanasopoulos, Nikolaos, Ranjan, Rajiv, Varghese, Blesson

论文摘要

调度在边缘计算中很重要。与云相反,边缘资源是硬件有限的,无法支持工作负载驱动的基础架构扩展。因此,资源分配和边缘的调度需要新的视角。每当提出工作请求时,现有的边缘调度研究都会假设所有必需的资源可用。本文挑战了假设,因为并非来自云服务器的所有作业请求都可以安排在边缘节点上。因此,确保客户之间的公平性(云服务器卸载作业)在考虑工作的优先级时成为一项关键任务。本文介绍了四种调度技术,第一个是幼稚的首先出现的策略,进一步提出了三种策略,即客户公平,优先公平和混合体,这些策略构成了客户和工作优先事项的公平性。在三种不同的情况下,在目标平台上进行评估,即相等,随机和高斯职位分布。与幼稚策略相比,实验研究强调了低开销和边缘节点上的作业的分布。结果证实了混合策略的出色性能,并展示了公平调度程序在边缘计算中的可行性。

Scheduling is important in Edge computing. In contrast to the Cloud, Edge resources are hardware limited and cannot support workload-driven infrastructure scaling. Hence, resource allocation and scheduling for the Edge requires a fresh perspective. Existing Edge scheduling research assumes availability of all needed resources whenever a job request is made. This paper challenges that assumption, since not all job requests from a Cloud server can be scheduled on an Edge node. Thus, guaranteeing fairness among the clients (Cloud servers offloading jobs) while accounting for priorities of the jobs becomes a critical task. This paper presents four scheduling techniques, the first is a naive first come first serve strategy and further proposes three strategies, namely a client fair, priority fair, and hybrid that accounts for the fairness of both clients and job priorities. An evaluation on a target platform under three different scenarios, namely equal, random, and Gaussian job distributions is presented. The experimental studies highlight the low overheads and the distribution of scheduled jobs on the Edge node when compared to the naive strategy. The results confirm the superior performance of the hybrid strategy and showcase the feasibility of fair schedulers for Edge computing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源