论文标题

AI驱动的有机分子的逆设计系统

AI-driven Inverse Design System for Organic Molecules

论文作者

Takeda, Seiji, Hama, Toshiyuki, Hsu, Hsiang-Han, Yamane, Toshiyuki, Masuda, Koji, Piunova, Victoria A., Zubarev, Dmitry, Pitera, Jed, Sanders, Daniel P., Nakano, Daiju

论文摘要

设计具有所需特性的新型材料是许多制造业的核心需求。在这种工业需求的驱动下,已经开发了各种算法和工具,这些算法和工具将AI(机器学习和分析)与物理,化学和材料科学领域知识结合在一起。 AI驱动的材料设计可以分为两个阶段。第一个是建模阶段,其目标是构建准确的回归或分类模型,以预测材料特性(例如玻璃过渡温度)或属性(例如有毒/无毒)。下一个阶段是设计,目标是组装或调整材料结构,以便他们可以基于在建模阶段训练的预测模型来实现用户指定目标属性值。为了获得最大的收益,应构建这两个阶段以形成连贯的工作流程。如今,有几种针对AI驱动材料设计的新兴服务和工具,但是,其中大多数仅提供部分技术组件(例如数据分析仪,回归模型,结构生成器等),对于特定目的而言有用,但是对于全面的材料设计,这些组件需要适当地进行安排。我们的材料设计系统提供了解决此问题的端到端解决方案,其中包括数据输入,功能编码,预测建模,解决方案搜索和结构生成的工作流程。该系统构建了一个回归模型来预测属性,解决了受过训练的模型上的反问题,并生成了满足目标特性的新型化学结构候选物。在本文中,我们将介绍系统的方法论,并展示一个简单的相反设计的例子,生成满足目标物理特性值的新化学结构。

Designing novel materials that possess desired properties is a central need across many manufacturing industries. Driven by that industrial need, a variety of algorithms and tools have been developed that combine AI (machine learning and analytics) with domain knowledge in physics, chemistry, and materials science. AI-driven materials design can be divided to mainly two stages; the first one is the modeling stage, where the goal is to build an accurate regression or classification model to predict material properties (e.g. glass transition temperature) or attributes (e.g. toxic/non-toxic). The next stage is design, where the goal is to assemble or tune material structures so that they can achieve user-demanded target property values based on a prediction model that is trained in the modeling stage. For maximum benefit, these two stages should be architected to form a coherent workflow. Today there are several emerging services and tools for AI-driven material design, however, most of them provide only partial technical components (e.g. data analyzer, regression model, structure generator, etc.), that are useful for specific purposes, but for comprehensive material design, those components need to be orchestrated appropriately. Our material design system provides an end-to-end solution to this problem, with a workflow that consists of data input, feature encoding, prediction modeling, solution search, and structure generation. The system builds a regression model to predict properties, solves an inverse problem on the trained model, and generates novel chemical structure candidates that satisfy the target properties. In this paper we will introduce the methodology of our system, and demonstrate a simple example of inverse design generating new chemical structures that satisfy targeted physical property values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源