论文标题
嘈杂扰动的确定性等效性
Deterministic equivalence for noisy perturbations
论文作者
论文摘要
我们证明了确定性复合物$ n \ times n $矩阵的对数电势的定量确定性等效定理受到小小的随机扰动。我们表明,概率接近$ 1 $,此日志电位最多是一个小错误,由不受干扰的矩阵的奇异值确定,该值大于某些小$ n $依赖性的截止参数。
We prove a quantitative deterministic equivalence theorem for the logarithmic potentials of deterministic complex $N\times N$ matrices subject to small random perturbations. We show that with probability close to $1$ this log-potential is, up to a small error, determined by the singular values of the unperturbed matrix which are larger than some small $N$-dependent cut-off parameter.