论文标题

可划分的顺序维度

The order dimension of divisibility

论文作者

Lewis, David, Souza, Victor

论文摘要

部分订购的套装$ p $的dushnik-miller尺寸是最小的$ d $,因此可以将$ p $嵌入$ d $线性订单的产品中。我们证明,在间隔$ \ {1,\ dotsc,n \} $上划分的尺寸等于$ {(\ log n)^2}(\ log \ log \ log \ log \ log n)^{ - θ(1)} $ as $ n $。 对于$ \ {1,\ dotsc,n \} $,我们证明了$ 2 $ dibimensible的$ 2 $数量的界限,其中$ 2 $ - poset $ p $的$ 2 $ dimension是最小的$ d $,因此$ p $是$ p $是对$ [d] $ $ [d] $的子集的子集的同构成的。我们还证明了一个上限的上限,以$ 2 $的限制限制限制的界限,并表明$ 2 $ - $ 2 $数的划分poset在集合$(αn,n,n] $中为$θ_α(\ log log n)$ for $α\ for $α\ in(0,1)$。最后,我们最终要解决几个问题。

The Dushnik-Miller dimension of a partially-ordered set $P$ is the smallest $d$ such that one can embed $P$ into a product of $d$ linear orders. We prove that the dimension of the divisibility order on the interval $\{1, \dotsc, n\}$, is equal to ${(\log n)^2}(\log\log n)^{-Θ(1)}$ as $n$ goes to infinity. We prove similar bounds for the $2$-dimension of divisibility in $\{1, \dotsc, n\}$, where the $2$-dimension of a poset $P$ is the smallest $d$ such that $P$ is isomorphic to a suborder of the subset lattice of $[d]$. We also prove an upper bound for the $2$-dimension of posets of bounded degree and show that the $2$-dimension of the divisibility poset on the set $(αn, n]$ is $Θ_α(\log n)$ for $α\in (0,1)$. At the end we pose several problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源