论文标题

与远程相互作用的神经形态网络中同步和放大振荡的出现

Emergence of synchronised and amplified oscillations in neuromorphic networks with long-range interactions

论文作者

Apicella, Ilenia, Busiello, Daniel Maria, Scarpetta, Silvia, Suweis, Samir

论文摘要

可以用粗粒变量来描述神经形态网络,如果正确考虑随机性,则出现持续行为会自发出现。例如,最近发现,连接的神经元贴片的定向线性链会放大输入信号,并调整其特征频率。在这里,我们研究了这样一个简单模型的概括,在参数空间和远程相互作用中引入了异质性和可变性,从而破坏了有向链的信息传输的优先方向。一方面,扩大参数区域会导致我们在分析上表征的更复杂的状态空间。此外,我们将非本地相互作用的强度分布与网络振荡的频率分布联系起来。另一方面,我们发现添加长距离相互作用可能会导致新现象的发作,因为在所有相互作用的单元中,这也可以与信号的放大共存,因为它们在所有相互作用的单位中的连贯和同步振荡。

Neuromorphic networks can be described in terms of coarse-grained variables, where emergent sustained behaviours spontaneously arise if stochasticity is properly taken in account. For example it has been recently found that a directed linear chain of connected patch of neurons amplifies an input signal, also tuning its characteristic frequency. Here we study a generalization of such a simple model, introducing heterogeneity and variability in the parameter space and long-range interactions, breaking, in turn, the preferential direction of information transmission of a directed chain. On one hand, enlarging the region of parameters leads to a more complex state space that we analytically characterise; moreover, we explicitly link the strength distribution of the non-local interactions with the frequency distribution of the network oscillations. On the other hand, we found that adding long-range interactions can cause the onset of novel phenomena, as coherent and synchronous oscillations among all the interacting units, which can also coexist with the amplification of the signal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源