论文标题

RCD(K,N)空间的可纠正性通过$δ$ - 拆卸地图

Rectifiability of RCD(K,N) spaces via $δ$-splitting maps

论文作者

Bruè, Elia, Pasqualetto, Enrico, Semola, Daniele

论文摘要

在本说明中,我们通过$Δ$ - 插图图提供了新的RCD(K,N)空间可重新讨论性的证据,并给出基本维度的较低的半度性证明。该论点的启发是受RICCI限制的Cheeger-Colding理论的启发,并依赖于Gigli开发的第二阶差分微积分以及Ambrosio-Honda的收敛性和稳定性结果。

In this note we give new proofs of rectifiability of RCD(K,N) spaces as metric measure spaces and lower semicontinuity of the essential dimension, via $δ$-splitting maps. The arguments are inspired by the Cheeger-Colding theory for Ricci limits and rely on the second order differential calculus developed by Gigli and on the convergence and stability results by Ambrosio-Honda.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源