论文标题

对角线内态对2道龙的共同不变措施的作用

Actions of diagonal endomorphisms on conformally invariant measures on the 2-torus

论文作者

Algom, Amir

论文摘要

令$ν$为一种概率度量,在内态$(\ times p,\ times p)$下是e godic,torus $ \ mathbb {t}^2 $,因此对于某些非principal投射$π$。我们表明,如果两个$ m \ neq n $均独立于$ p $,则$ n $ n $典型点的$(\ times m,\ times n)$ orbits将对Lebesgue度量等级。如果$ m> p $,则通常是$(\ times m,\ times p)$ orbits在$ y $ - 轴上的边际$μ$的lebesgue Measure的产品。对于某些自我相似的度量$ν$,我们还以同样的精神证明结果。这些是应得的结果的较高维度类似物(除其他),lindenstrauss和Hochman-Shmerky。

Let $ν$ be a probability measure that is ergodic under the endomorphism $(\times p, \times p)$ of the torus $\mathbb{T}^2$, such that $\dim πμ< \dim μ$ for some non-principal projection $π$. We show that, if both $m\neq n$ are independent of $p$, the $(\times m, \times n)$ orbits of $ν$ typical points will equidistribute towards the Lebesgue measure. If $m>p$ then typically the $(\times m, \times p)$ orbits will equidistribute towards the product of the Lebesgue measure with the marginal of $μ$ on the $y$-axis. We also prove results in the same spirit for certain self similar measures $ν$. These are higher dimensional analogues of results due (among others) to Host, Lindenstrauss, and Hochman-Shmerkin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源