论文标题

在观察性研究中,多种治疗的因果关系估计二进制结果

Estimation of Causal Effects of Multiple Treatments in Observational Studies with a Binary Outcome

论文作者

Hu, Liangyuan, Gu, Chenyang, Lopez, Michael, Ji, Jiayi, Wisnivesky, Juan

论文摘要

当结果为二元时,估计多种治疗的因果效应缺乏可靠的方法。本文使用两组独特的模拟集来提出和评估在这种情况下使用贝叶斯添加剂回归树(BART)的使用。首先,我们将BART与已提出的连续结果提出的几种方法进行了比较,包括治疗加权的逆可能性(IPTW),目标最大似然估计器(TMLE),向量匹配和回归调整。结果表明,在使用广义增强模型(GBM)的治疗分配和结果生成机制的非线性和非促进性​​的条件下,BART,TMLE和IPTW提供了更好的偏置降低和较小的均方根误差。 Bart和TMLE提供了更一致的95%CI覆盖范围和更好的大样本收敛性。其次,我们提供了一种策略,以确定保留推理单位的共同支持区域,并避免在不存在共同支持的协变空间区域外推外。与基于广义的倾向得分策略相比,巴特保留了更明确的单位,与TMLE或GBM相比,在各种情况下,与TMLE或GBM相比,偏差较低,与协变量重叠的程度不同。一项研究研究了三种手术方法对非小细胞肺癌的影响的案例研究证明了这些方法。

There is a dearth of robust methods to estimate the causal effects of multiple treatments when the outcome is binary. This paper uses two unique sets of simulations to propose and evaluate the use of Bayesian Additive Regression Trees (BART) in such settings. First, we compare BART to several approaches that have been proposed for continuous outcomes, including inverse probability of treatment weighting (IPTW), targeted maximum likelihood estimator (TMLE), vector matching and regression adjustment. Results suggest that under conditions of non-linearity and non-additivity of both the treatment assignment and outcome generating mechanisms, BART, TMLE and IPTW using generalized boosted models (GBM) provide better bias reduction and smaller root mean squared error. BART and TMLE provide more consistent 95 per cent CI coverage and better large-sample convergence property. Second, we supply BART with a strategy to identify a common support region for retaining inferential units and for avoiding extrapolating over areas of the covariate space where common support does not exist. BART retains more inferential units than the generalized propensity score based strategy, and shows lower bias, compared to TMLE or GBM, in a variety of scenarios differing by the degree of covariate overlap. A case study examining the effects of three surgical approaches for non-small cell lung cancer demonstrates the methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源