论文标题
本地/非本地$ p $ -laplacians的系统:特征值问题及其渐近限制为$ p \ to \ infty $
A System of Local/Nonlocal $p$-Laplacians: The Eigenvalue Problem and Its Asymptotic Limit as $p\to\infty$
论文作者
论文摘要
在这项工作中,给定(1,\ infty)$中的$ p \,我们证明了第一个eigenvalue $λ_p$及其相应的eigenVector $(u_p,v_p,v_p)$的存在和简单性,用于以下本地/非核心PDE PDE System \ begin {equination} \ begin {array} {rclcl}-Δ_pu +(-ux) \ frac {2β} {α+β}λ| u |^α| v |^{β-2} v&\ mbox {in}&ω u&=&0&\ text {on}&\ mathbb {r}^n \setMinusΩ v&=&0&\ text {on}&\ mathbb {r}^n \ setMinusω,\ end {array} \ right。 \ end {equation}其中$ω$$ \ subset $ $ $ \ mathbb {r}^n $是一个有限的开放域,$ 0 <r,s <1 $和$α(p)+β(p)= p $。此外,我们将渐近限制定为$ p \ to \ infty $,证明了相应的第一个$ \ infty- $ egenvalue的明确几何表征,即$λ_ {\ infty} $,以及对$ _p,v_p,v_p,v_p,v_p)的均匀融合$(u _ {\ infty},v _ {\ infty})$。最后,三重$(u _ {\ infty},v _ {\ infty},λ_ {\ infty})$在粘度意义上验证了一个极限的PDE系统。
In this work, given $p\in (1,\infty)$, we prove the existence and simplicity of the first eigenvalue $λ_p$ and its corresponding eigenvector $(u_p,v_p)$, for the following local/nonlocal PDE system \begin{equation}\label{Eq0} \left\{ \begin{array}{rclcl} -Δ_p u + (-Δ)^r_p u & = & \frac{2α}{α+β}λ|u|^{α-2}|v|^βu & \mbox{in} & Ω\\ -Δ_p v + (-Δ)^s_p v& = & \frac{2β}{α+β}λ|u|^α|v|^{β-2}v & \mbox{in} & Ω u& =& 0&\text{ on } & \mathbb{R}^N \setminus Ω v& =& 0&\text{ on } & \mathbb{R}^N \setminus Ω, \end{array} \right. \end{equation} where $Ω$$\subset$ $\mathbb{R}^N$ is a bounded open domain, $0<r, s<1$ and $α(p)+β(p) = p$. Moreover, we address the asymptotic limit as $p \to \infty$, proving the explicit geometric characterization of the corresponding first $\infty-$eigenvalue, namely $λ_{\infty}$, and the uniformly convergence of the pair $(u_p,v_p)$ to the $\infty-$eigenvector $(u_{\infty},v_{\infty})$. Finally, the triple $(u_{\infty},v_{\infty},λ_{\infty})$ verifies, in the viscosity sense, a limiting PDE system.