论文标题

路线网络和旅行时间从多个外观角度提取,并带有空间数据

Road Network and Travel Time Extraction from Multiple Look Angles with SpaceNet Data

论文作者

Van Etten, Adam, Shermeyer, Jacob, Hogan, Daniel, Weir, Nicholas, Lewis, Ryan

论文摘要

直接从遥感中识别道路网络和最佳途径对于广泛的人道主义和商业应用至关重要。然而,尽管以前已经尝试过识别道路像素,但从高架图像中对路线旅行时间的估计仍然是一个新的问题,尤其是对于纳迪尔的间接费用图像。为此,我们从SpaceNet MVOI数据集中提取具有旅行时间估算的道路网络。利用Cresiv2框架,我们证明了以各种观察角提取道路网络,并以27个独特的Nadir角度量化性能,并使用图理论APLS_LENGTH和APLS_TIME指标。 APLS_LENGTH和APLS_TIME分数之间的最小差距为0.03,这表明我们的进近产生了速度限制和旅行时间,并以很高的忠诚度得出。我们还探索了在模型训练期间合并所有可用角度的实用性,并找到APLS_Time = 0.56的峰值得分。尽管在极端倾斜的外角与直接从头顶捕获的图像相比,组合模型比角度特异性模型表现出大大提高的鲁棒性,尽管路网的外观截然不同。

Identification of road networks and optimal routes directly from remote sensing is of critical importance to a broad array of humanitarian and commercial applications. Yet while identification of road pixels has been attempted before, estimation of route travel times from overhead imagery remains a novel problem, particularly for off-nadir overhead imagery. To this end, we extract road networks with travel time estimates from the SpaceNet MVOI dataset. Utilizing the CRESIv2 framework, we demonstrate the ability to extract road networks in various observation angles and quantify performance at 27 unique nadir angles with the graph-theoretic APLS_length and APLS_time metrics. A minimal gap of 0.03 between APLS_length and APLS_time scores indicates that our approach yields speed limits and travel times with very high fidelity. We also explore the utility of incorporating all available angles during model training, and find a peak score of APLS_time = 0.56. The combined model exhibits greatly improved robustness over angle-specific models, despite the very different appearance of road networks at extremely oblique off-nadir angles versus images captured from directly overhead.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源