论文标题

用于抗癌超食物预测的图形注意自动编码器

Graph Attentional Autoencoder for Anticancer Hyperfood Prediction

论文作者

Gonzalez, Guadalupe, Gong, Shunwang, Laponogov, Ivan, Veselkov, Kirill, Bronstein, Michael

论文摘要

最近的研究工作表明,有可能从食物中发现抗癌药物样分子从其对蛋白质 - 蛋白质相互作用网络的影响,为抗病饮食设计的潜在途径。我们将此任务提出为图形分类问题,在该问题上,图形神经网络(GNN)已实现了最新的结果。但是,根据我们的经验证据,GNN很难在稀疏的低维特征上进行训练。在这里,我们介绍了图形增强功能,将图形结构信息和以不同比率的原始节点属性集成在一起,以简化网络的训练。我们进一步引入了图形上的新型神经网络体系结构,即图形注意自动编码器(GAA),以基于扰动的蛋白质网络预测具有抗癌特性的食物化合物。我们证明该方法在此任务中优于基线方法和最先进的图形分类模型。

Recent research efforts have shown the possibility to discover anticancer drug-like molecules in food from their effect on protein-protein interaction networks, opening a potential pathway to disease-beating diet design. We formulate this task as a graph classification problem on which graph neural networks (GNNs) have achieved state-of-the-art results. However, GNNs are difficult to train on sparse low-dimensional features according to our empirical evidence. Here, we present graph augmented features, integrating graph structural information and raw node attributes with varying ratios, to ease the training of networks. We further introduce a novel neural network architecture on graphs, the Graph Attentional Autoencoder (GAA) to predict food compounds with anticancer properties based on perturbed protein networks. We demonstrate that the method outperforms the baseline approach and state-of-the-art graph classification models in this task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源