论文标题
多维矩形的完整和充分的空间支配
Complete and Sufficient Spatial Domination of Multidimensional Rectangles
论文作者
论文摘要
矩形用于在众多应用,系统和索引结构中近似对象或对象集。许多任务,例如最近的邻居搜索和相似性排名,都需要确定一个矩形a的对象是否必须或不得与第二个矩形B中的对象更接近,而不是第三个矩形R中的对象。要确定“空间统治”的关系,可以证明,使用最小和最大的差异可以表明,最小的差异通常是不可能的。该空间宝石为空间支配提供了必要和足够的决策标准,即使在更高的维空间中,也可以有效地计算出来。此外,该空间GEM提供了一个示例,伪代码和Python中的实现。
Rectangles are used to approximate objects, or sets of objects, in a plethora of applications, systems and index structures. Many tasks, such as nearest neighbor search and similarity ranking, require to decide if objects in one rectangle A may, must, or must not be closer to objects in a second rectangle B, than objects in a third rectangle R. To decide this relation of "Spatial Domination" it can be shown that using minimum and maximum distances it is often impossible to detect spatial domination. This spatial gem provides a necessary and sufficient decision criterion for spatial domination that can be computed efficiently even in higher dimensional space. In addition, this spatial gem provides an example, pseudocode and an implementation in Python.