论文标题

关于幂律动力学系统基本分解的独立性

On the Independence of Fundamental Decompositions of Power-Law Kinetic Systems

论文作者

Hernandez, Bryan S.

论文摘要

化学反应网络(CRN)的基本分解是通过将设置为“基本类别”的反应来诱导的。它是JI和Feinberg质量作用系统的较高缺陷算法的基础,以及Hernandez等人的幂律动力学系统的多立法性算法。除了以前的工作外,我们还提供了独立性的重要特性(即,网络的化学计量子空间是子网络的直接总和)和独立的独立性(即网络的发生率图的形象,是进攻率图的直接映射图像的直接映射映射图像的decomptionss of subnetworks of subnetworks of tecomptoses of tecomptoses of tecompositss的直接总和)。 Feinberg建立了独立分解与网络的积极平衡之间的基本关系,我们称之为Feinberg分解定理(FDT)。此外,Farinas等。最近记录了其独立于发病率的版本。基本分解将网络仅分为缺陷0或1的子网。因此,可以使用较低缺陷网络的可用结果,例如缺陷零定理(DZT)。这些证明了独立基本分解的研究是合理的。 MATLAB程序(i)在基本分解下计算CRN的子网和(ii)对于确定分解是否是独立且与发病率无关的。最后,我们提供以下解决方案,以通过以下步骤确定CRN的多立场性:(1)使用程序,(2)在缺陷0或1(例如DZT)和(3)使用FDT的CRN中使用可用结果。我们通过表明Hernandez等人对Schmitz的碳循环模型的子网的概括(赋予质量动作动力学)没有多种能力的能力来说明解决方案。

The fundamental decomposition of a chemical reaction network (CRN) is induced by partitioning the reaction set into "fundamental classes". It was the basis of the Higher Deficiency Algorithm for mass action systems of Ji and Feinberg, and the Multistationarity Algorithm for power-law kinetic systems of Hernandez et al. In addition to our previous work, we provide important properties of the independence (i.e., the network's stoichiometric subspace is the direct sum of the subnetworks' stoichiometric subspaces) and the incidence-independence (i.e., the image of the network's incidence map is the direct sum of the incidence maps' images of the subnetworks) of these decompositions. Feinberg established the essential relationship between independent decompositions and the set of positive equilibria of a network, which we call the Feinberg Decomposition Theorem (FDT). Moreover, Farinas et al. recently documented its version for incidence-independence. Fundamental decomposition divides the network into subnetworks of deficiency either 0 or 1 only. Hence, available results for lower deficiency networks, such as the Deficiency Zero Theorem (DZT), can be used. These justify the study of independent fundamental decompositions. A MATLAB program which (i) computes the subnetworks of a CRN under the fundamental decomposition and (ii) is useful for determining whether the decomposition is independent and incidence-independent is also created. Finally, we provide the following solution for determining multistationarity of CRNs with the following steps: (1) the use of the program, (2) the application of available results for CRNs with deficiency 0 or 1 (e.g., DZT), and (3) the use of FDT. We illustrate the solution by showing that the generalization of a subnetwork of Schmitz's carbon cycle model by Hernandez et al., endowed with mass action kinetics, has no capacity for multistationarity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源