论文标题

管与气泡 - YouTube建议的拓扑限制

Tubes & Bubbles -- Topological confinement of YouTube recommendations

论文作者

Roth, Camille, Mazières, Antoine, Menezes, Telmo

论文摘要

推荐算法在在线用户限制中的作用是快速增长的文献的核心。最近的经验研究通常表明,在明确建议的情况下(基于用户指定的偏好),而不是隐式建议(基于用户活动),可以主要观察到过滤气泡。我们专注于已成为主要在线内容提供商的YouTube,但在此之前,限制以系统的方式进行了研究。我们首先从各种种子视频开始,首先描述建议视频集的属性,以设计一种可靠的探索协议,能够捕获这些建议会递归诱导的潜在建议图。这些图形构成了潜在用户导航沿着非个人化建议的背景。从那里开始,它以拓扑,局部或时间术语,我们表明我们所说的意思是YouTube建议的景观通常很容易受到限制动态。此外,最狭窄的推荐图,即潜在的气泡,似乎是围绕吸引最高受众并因此观看时间的一组视频而组织的。

The role of recommendation algorithms in online user confinement is at the heart of a fast-growing literature. Recent empirical studies generally suggest that filter bubbles may principally be observed in the case of explicit recommendation (based on user-declared preferences) rather than implicit recommendation (based on user activity). We focus on YouTube which has become a major online content provider but where confinement has until now been little-studied in a systematic manner. Starting from a diverse number of seed videos, we first describe the properties of the sets of suggested videos in order to design a sound exploration protocol able to capture latent recommendation graphs recursively induced by these suggestions. These graphs form the background of potential user navigations along non-personalized recommendations. From there, be it in topological, topical or temporal terms, we show that the landscape of what we call mean-field YouTube recommendations is often prone to confinement dynamics. Moreover, the most confined recommendation graphs i.e., potential bubbles, seem to be organized around sets of videos that garner the highest audience and thus plausibly viewing time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源