论文标题

Cyclecluster:深度半监督分类的聚类正规化现代化

CycleCluster: Modernising Clustering Regularisation for Deep Semi-Supervised Classification

论文作者

Sellars, Philip, Aviles-Rivero, Angelica, Schönlieb, Carola Bibiane

论文摘要

鉴于获得大量标记数据的潜在困难,许多作品探索了深度半监督学习的使用,该学习使用标记和未标记的数据来训练神经网络体系结构。绝大多数SSL方法侧重于实施低密度分离假设或一致性假设,即决策边界应位于低密度区域的观念。但是,他们通过对每个数据点的决策边界进行局部更改,忽略了数据的全局结构来实现此假设。在这项工作中,我们使用群集数据中存在的全局信息来探索一种替代方法,以更新我们的决策边界。我们提出了一个新颖的框架,即Cyclecluster,以进行深度半监督分类。我们的核心优化是由新的基于聚类的正规化以及基于图形的伪标签和共享深层网络驱动的。证明群集假设的直接实施是基于普通一致性正规化的可行替代方法。我们通过仔细的数值结果来证明我们的技术的预测能力。

Given the potential difficulties in obtaining large quantities of labelled data, many works have explored the use of deep semi-supervised learning, which uses both labelled and unlabelled data to train a neural network architecture. The vast majority of SSL approaches focus on implementing the low-density separation assumption or consistency assumption, the idea that decision boundaries should lie in low density regions. However, they have implemented this assumption by making local changes to the decision boundary at each data point, ignoring the global structure of the data. In this work, we explore an alternative approach using the global information present in the clustered data to update our decision boundaries. We propose a novel framework, CycleCluster, for deep semi-supervised classification. Our core optimisation is driven by a new clustering based regularisation along with a graph based pseudo-labels and a shared deep network. Demonstrating that direct implementation of the cluster assumption is a viable alternative to the popular consistency based regularisation. We demonstrate the predictive capability of our technique through a careful set of numerical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源