论文标题

有关多种卷积神经网络的癫痫和阿尔茨海默氏病研究的海马细分

Hippocampus Segmentation on Epilepsy and Alzheimer's Disease Studies with Multiple Convolutional Neural Networks

论文作者

Carmo, Diedre, Silva, Bruna, Yasuda, Clarissa, Rittner, Letícia, Lotufo, Roberto

论文摘要

对磁共振成像的海马分割对于诊断,治疗决策和神经精神疾病的研究至关重要。自动分割是一个活跃的研究领域,许多最近的模型都使用了深度学习。大多数当前最先进的海马细分方法训练了他们的方法从公共数据集的健康或阿尔茨海默氏病患者进行训练。这就提出了一个问题,这些方法是否能够识别不同领域的海马,即海马切除率的癫痫患者。在本文中,我们介绍了一种最先进的开源,现成的,基于深度学习的海马细分方法。它使用扩展的2D多取向方法,并具有自动预处理和定向对齐方式。该方法是使用HARP(公共阿尔茨海默氏病海马细分数据集开发和验证的。我们与其他最近的深度学习方法一起在两个领域中测试了该方法:竖琴测试集和一个内部癫痫数据集,该数据集包含海马,名为Hcunicamp。我们表明,我们的方法虽然只接受了竖琴训练,但在竖琴测试集和骰子中的Hcunicamp中都超过了其他文献。此外,还分别报道了Hcunicamp体积训练和测试的结果,以及癫痫和阿尔茨海默氏症数据的训练和测试之间的比较,反之亦然。尽管当前的最新方法(包括我们自己的)在竖琴中实现了0.9个骰子,但所有经过测试的方法,包括我们自己的Hcunicamp切除区域中都产生了假阳性,表明当涉及切除术时海马段方法的改进仍然存在。

Hippocampus segmentation on magnetic resonance imaging is of key importance for the diagnosis, treatment decision and investigation of neuropsychiatric disorders. Automatic segmentation is an active research field, with many recent models using deep learning. Most current state-of-the art hippocampus segmentation methods train their methods on healthy or Alzheimer's disease patients from public datasets. This raises the question whether these methods are capable of recognizing the hippocampus on a different domain, that of epilepsy patients with hippocampus resection. In this paper we present a state-of-the-art, open source, ready-to-use, deep learning based hippocampus segmentation method. It uses an extended 2D multi-orientation approach, with automatic pre-processing and orientation alignment. The methodology was developed and validated using HarP, a public Alzheimer's disease hippocampus segmentation dataset. We test this methodology alongside other recent deep learning methods, in two domains: The HarP test set and an in-house epilepsy dataset, containing hippocampus resections, named HCUnicamp. We show that our method, while trained only in HarP, surpasses others from the literature in both the HarP test set and HCUnicamp in Dice. Additionally, Results from training and testing in HCUnicamp volumes are also reported separately, alongside comparisons between training and testing in epilepsy and Alzheimer's data and vice versa. Although current state-of-the-art methods, including our own, achieve upwards of 0.9 Dice in HarP, all tested methods, including our own, produced false positives in HCUnicamp resection regions, showing that there is still room for improvement for hippocampus segmentation methods when resection is involved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源