论文标题

线性反问题的总深度变化

Total Deep Variation for Linear Inverse Problems

论文作者

Kobler, Erich, Effland, Alexander, Kunisch, Karl, Pock, Thomas

论文摘要

成像中的各种逆问题可以作为由特定于任务数据保真度和正则化项组成的变异问题。在本文中,我们提出了一种新颖的可学习通用常规器,利用深度学习的最新建筑设计模式。我们将学习问题视为一个离散采样的最佳控制问题,为此我们得出了伴随状态方程和最佳条件。通过利用方法的变异结构,我们就从不同训练数据集获得的学习参数进行了灵敏度分析。此外,我们进行了非线性本征函数分析,该分析揭示了学识渊博的正常化程序的有趣属性。我们展示了经典图像恢复和医学图像重建问题的最先进性能。

Diverse inverse problems in imaging can be cast as variational problems composed of a task-specific data fidelity term and a regularization term. In this paper, we propose a novel learnable general-purpose regularizer exploiting recent architectural design patterns from deep learning. We cast the learning problem as a discrete sampled optimal control problem, for which we derive the adjoint state equations and an optimality condition. By exploiting the variational structure of our approach, we perform a sensitivity analysis with respect to the learned parameters obtained from different training datasets. Moreover, we carry out a nonlinear eigenfunction analysis, which reveals interesting properties of the learned regularizer. We show state-of-the-art performance for classical image restoration and medical image reconstruction problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源