论文标题

远端血管树中定义体内平衡的多尺度框架:肺循环的应用

A Multiscale Framework for Defining Homeostasis in Distal Vascular Trees: Applications to the Pulmonary Circulation

论文作者

Filonova, Vasilina, Gharahi, Hamidreza, Nama, Nitesh, Baek, Seungik, Figueroa, C. Alberto

论文摘要

将血液动力学与血管壁生长和重塑(G&R)耦合对于理解远端血管的病理至关重要,以研究无法治愈的血管疾病的进展,例如肺动脉高压。本研究是首次建模尝试,该尝试重点是定义远端肺血管床中的稳态基线值,这是一种所谓的稳态优化。为了定义血管树中血管稳态和总血液动力学,我们考虑了两个时间尺度:心脏周期和更长的血管适应时间。迭代稳态优化以缓慢的量表进行并结合:扩展的Murray定律,壁代谢成本功能,应力平衡和血液动力学。小血管的肺动脉网络由分形分叉树表示。脉动血流通过Womersley的可变形壁分析溶液来描述。正骨膜的约束混合理论描述了血管壁的机械响应,然后在平均压力周围线性化。壁物质参数的特征是使用可用的猪肺动脉实验和文献中的人类数据。提出了对称和非对称分形树的说明性示例,以在正常受试者中提供稳态值。我们还概述了派生时间多尺形式主义的关键思想,以证明拟议的管理方程式单向耦合系统并确定固有的假设。开发的框架展示了肺动脉高压中的晚期参数研究以及未来的G&R和血液动力学建模的潜力。

Coupling hemodynamics with vessel wall growth and remodeling (G&R) is crucial for understanding pathology at distal vasculature to study progression of incurable vascular diseases, such as pulmonary arterial hypertension. The present study is the first modeling attempt that focuses on defining homeostatic baseline values in distal pulmonary vascular bed via, a so-called, homeostatic optimization. To define the vascular homeostasis and total hemodynamics in the vascular tree, we consider two time-scales: a cardiac cycle and a longer period of vascular adaptations. An iterative homeostatic optimization is performed at the slow-time scale and incorporates: an extended Murray's law, wall metabolic cost function, stress equilibrium, and hemodynamics. The pulmonary arterial network of small vessels is represented by a fractal bifurcating tree. The pulsatile blood flow is described by a Womersley's deformable wall analytical solution. A vessel wall mechanical response is described by the constrained mixture theory for an orthotropic membrane and then linearized around mean pressure. Wall material parameters are characterized by using available porcine pulmonary artery experiments and human data from literature. Illustrative examples for symmetric and asymmetric fractal trees are presented to provide homeostatic values in normal subjects. We also outline the key ideas for the derivation of a temporal multiscale formalism to justify the proposed one-way coupled system of governing equations and identify the inherent assumptions. The developed framework demonstrates a potential for advanced parametric studies and future G&R and hemodynamics modeling in pulmonary arterial hypertension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源