论文标题

Wasserstein分布在使用条件价值风险的有条件值的避免碰撞方面的稳固运动控制

Wasserstein Distributionally Robust Motion Control for Collision Avoidance Using Conditional Value-at-Risk

论文作者

Hakobyan, Astghik, Yang, Insoon

论文摘要

在本文中,当不确定性的真实概率分布未知时,移动机器人考虑了风险感知的运动控制方案,以避免随机移动障碍。我们提出了一种新型的模型预测控制方法(MPC)方法,即使障碍物运动的真实分布偏离了使用有限量的样本数据获得的经验分布,即使障碍物运动的真实分布也偏离了障碍运动的真实分布。通过选择由Wasserstein度量测量的歧义性设置作为统计球,我们可以使用独立于训练数据生成的新样本数据来实现样本外风险的概率保证。为了解决分布强大的MPC问题固有的无限维度问题,我们使用基于Kantorovich二元性原理的现代分配强大的优化技术将其重新将其重新制定为有限维的非线性程序。为了在仿射动力学和输出方程式中找到全球最佳解决方案,使用McCormick松弛设计了空间分支和结合算法。通过使用非线性汽车样媒介物模型和线性化的四极管模型,通过模拟研究来证明和分析该方法的性能。

In this paper, a risk-aware motion control scheme is considered for mobile robots to avoid randomly moving obstacles when the true probability distribution of uncertainty is unknown. We propose a novel model predictive control (MPC) method for limiting the risk of unsafety even when the true distribution of the obstacles' movements deviates, within an ambiguity set, from the empirical distribution obtained using a limited amount of sample data. By choosing the ambiguity set as a statistical ball with its radius measured by the Wasserstein metric, we achieve a probabilistic guarantee of the out-of-sample risk, evaluated using new sample data generated independently of the training data. To resolve the infinite-dimensionality issue inherent in the distributionally robust MPC problem, we reformulate it as a finite-dimensional nonlinear program using modern distributionally robust optimization techniques based on the Kantorovich duality principle. To find a globally optimal solution in the case of affine dynamics and output equations, a spatial branch-and-bound algorithm is designed using McCormick relaxation. The performance of the proposed method is demonstrated and analyzed through simulation studies using a nonlinear car-like vehicle model and a linearized quadrotor model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源