论文标题
关于奇异等价和识别的注释
A note on singular equivalences and idempotents
论文作者
论文摘要
令$λ$为artin代数,让$ e $成为$λ$中的一个愿意。我们研究某些保留奇异性类别的函子。假设$ \ mathrm {pd}λe_{eλe} <\ infty $和$ \ mathrm {id}_λ\ tfrac {λ/\ langle e \ rangle} {\ mathrm {\ mathrm $eλe$和$λ$。
Let $Λ$ be an Artin algebra and let $e$ be an idempotent in $Λ$. We study certain functors which preserve the singularity categories. Suppose $\mathrm{pd}Λe_{eΛe}<\infty$ and $\mathrm{id}_Λ\tfrac{Λ/\langle e\rangle}{\mathrm{rad}Λ/\langle e\rangle} < \infty$, we show that there is a singular equivalence between $eΛe$ and $Λ$.