论文标题
横向流中倾斜喷射的湍流标量通量:反梯度传输和深度学习建模
Turbulent scalar flux in inclined jets in crossflow: counter gradient transport and deep learning modelling
论文作者
论文摘要
使用高度分辨的大涡模拟(LES),在两个不同的速度比下研究了横流的圆柱和倾斜喷气机。首先,对湍流标量混合的研究将光棚放到先前观察到的但无法解释的负湍流扩散率的现象上。我们确定了两种不同类型的反梯度运输,在不同区域中普遍存在:在整个风向剪切层中,第一个是由交叉梯度转运引起的;第二个,靠近注射后的墙壁是由非本地效应引起的。然后,我们提出了一种深入学习方法,通过调整先前开发的张量基量神经网络来建模雷诺的压力(Ling等,2016a),以建模湍流标量通量。该方法使用具有嵌入式坐标框架不变性的深神经网络,以预测用于训练的高忠诚度数据中无法明确可用的张力湍流扩散率。通过分析确保矩阵扩散率导致对流扩散方程的稳定解决方案,我们将此方法应用于所研究的交叉流中的倾斜射流。与简单模型相比,该结果显示出显着改善,尤其是在交叉梯度效应在湍流混合中起重要作用的情况下。本文提出的模型不仅限于交叉流中的喷气机。它可以在考虑标量的雷诺平均传输的任何湍流中使用。
A cylindrical and inclined jet in crossflow is studied under two distinct velocity ratios, $r=1$ and $r=2$, using highly resolved large eddy simulations (LES). First, an investigation of turbulent scalar mixing sheds light onto the previously observed but unexplained phenomenon of negative turbulent diffusivity. We identify two distinct types of counter gradient transport, prevalent in different regions: the first, throughout the windward shear layer, is caused by cross-gradient transport; the second, close to the wall right after injection, is caused by non-local effects. Then, we propose a deep learning approach for modelling the turbulent scalar flux by adapting the tensor basis neural network previously developed to model Reynolds stresses (Ling et al. 2016a). This approach uses a deep neural network with embedded coordinate frame invariance to predict a tensorial turbulent diffusivity that is not explicitly available in the high fidelity data used for training. After ensuring analytically that the matrix diffusivity leads to a stable solution for the advection diffusion equation, we apply this approach in the inclined jets in crossflow under study. The results show significant improvement compared to a simple model, particularly where cross-gradient effects play an important role in turbulent mixing. The model proposed herein is not limited to jets in crossflow; it can be used in any turbulent flow where the Reynolds averaged transport of a scalar is considered.