论文标题
注意力集体:使用多个部分注释数据集的全身器官的统一框架
AttentionAnatomy: A unified framework for whole-body organs at risk segmentation using multiple partially annotated datasets
论文作者
论文摘要
计算机断层扫描(CT)中的器官风险(OAR)描述是放射治疗(RT)计划的重要一步。最近,已经提出并应用了基于深度学习的OAR描述方法,并应用于人体的单独区域(头部和颈部,胸腔和腹部)。但是,关于端到端的全身桨划分的研究很少,因为现有数据集大部分是部分或不完全注释此类任务的。在本文中,我们提议的端到端卷积神经网络模型称为\ textbf {注意{athosomy},可以通过三个部分注释的数据集共同训练,从整个身体分段。我们的主要贡献是:1)由人体区域标签隐式引导的注意模块,以调节分割分支输出; 2)预测重新校准操作,利用输入图像的先前信息来处理部分通知(HPA)问题; 3)结合批处理骰子损失和空间平衡局灶性损失的新型混合损失函数,以减轻器官大小不平衡问题。与基线模型相比,我们提出的框架的实验结果在Sørensen-Dice系数(DSC)和95 \%Hausdorff距离方面都显着改善。
Organs-at-risk (OAR) delineation in computed tomography (CT) is an important step in Radiation Therapy (RT) planning. Recently, deep learning based methods for OAR delineation have been proposed and applied in clinical practice for separate regions of the human body (head and neck, thorax, and abdomen). However, there are few researches regarding the end-to-end whole-body OARs delineation because the existing datasets are mostly partially or incompletely annotated for such task. In this paper, our proposed end-to-end convolutional neural network model, called \textbf{AttentionAnatomy}, can be jointly trained with three partially annotated datasets, segmenting OARs from whole body. Our main contributions are: 1) an attention module implicitly guided by body region label to modulate the segmentation branch output; 2) a prediction re-calibration operation, exploiting prior information of the input images, to handle partial-annotation(HPA) problem; 3) a new hybrid loss function combining batch Dice loss and spatially balanced focal loss to alleviate the organ size imbalance problem. Experimental results of our proposed framework presented significant improvements in both Sørensen-Dice coefficient (DSC) and 95\% Hausdorff distance compared to the baseline model.