论文标题

在粗空产品的渐近维度上

On the asymptotic dimension of products of coarse spaces

论文作者

Banakh, Iryna, Banakh, Taras

论文摘要

我们证明,对于任何粗空间,$ x_1,\ dots,x_n $的渐近维度$ \ ge 1 $,产品$ x = x_1 \ times \ times \ dots \ times x_n $具有渐近尺寸$ \ ge n $。另一个结果指出,如果$ z $允许组$ \ mathbb z^n $的几乎免费操作,则一个finarity coare space $ z $具有$ \ mathrm {asdim}(z)\ ge n $。我们从以下组合结果(概括了大风的十六进制定理)来得出这些结果:对于离散盒的任何封面$ \数学f $ 1 $这样,以至于$ | \ {f \ in \ mathcal f:f \ cap b \ ne \ emptyset \} |> n $。

We prove that for any coarse spaces $X_1,\dots,X_n$ of asymptotic dimension $\ge 1$, the product $X=X_1\times\dots\times X_n$ has asymptotic dimension $\ge n$. Another result states that a finitary coare space $Z$ has $\mathrm{asdim}(Z)\ge n$ if $Z$ admits an almost free action of the group $\mathbb Z^n$. We deduce these results from the following combinatorial result (that generalized the the Hex Theorem of Gale): for any cover $\mathcal F$ of a discrete box $K=k_1\times \dots \times k_n$, either some set $F\in\mathcal F$ contains a chain connecting two opposite faces of $K$ or there exists a set $B\subset K$ of diameter $\le 1$ such that $|\{F\in\mathcal F:F\cap B\ne\emptyset\}|>n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源