论文标题

连续规格的Gibbsian表示:Kozlov和Sullivan的定理重新审视

Gibbsian representations of continuous specifications: the theorems of Kozlov and Sullivan revisited

论文作者

Barbieri, Sebastián, Gómez, Ricardo, Marcus, Brian, Meyerovitch, Tom, Taati, Siamak

论文摘要

Kozlov和Sullivan的定理将Gibbs的指标表征为具有正连续规范的措施。更确切地说,Kozlov表明,晶格的符号配置上的每个正连续规范都是由标准符合性的相互作用产生的。沙利文(Sullivan)表明,每个偏移不变的正连续规范都是通过满足变异性可舒适性较弱条件的转移不变的相互作用而产生的。这些结果在1970年代得到了证明。自那时以来的一个空旷的问题是,科兹洛夫的定理是否在偏移不变的环境中,等效地,沙利文的结论是否可以从变异性可舒适性转化为规范性。我们表明答案是否:存在任何不变的不变规范相互作用产生的偏移不变的正连续规格。另一方面,我们给出了科兹洛夫(Kozlov)建议的扩展名的完整证明,该延伸为具有任意硬约束的配置空间上的正连续规范的表征。我们还提出了沙利文定理的扩展版。除了简化原始证明中的一些参数外,我们的新版本的沙利文定理适用于原始证明未涵盖的各种设置。特别是,当规范的支持是硬核偏移或二维$ q $ - 颜色的换班时,它适用于$ q \ geq 6 $。

The theorems of Kozlov and Sullivan characterize Gibbs measures as measures with positive continuous specifications. More precisely, Kozlov showed that every positive continuous specification on symbolic configurations of the lattice is generated by a norm-summable interaction. Sullivan showed that every shift-invariant positive continuous specification is generated by a shift-invariant interaction satisfying the weaker condition of variation-summability. These results were proven in the 1970s. An open question since that time is whether Kozlov's theorem holds in the shift-invariant setting, equivalently whether Sullivan's conclusion can be improved from variation-summability to norm-summability. We show that the answer is no: there exist shift-invariant positive continuous specifications that are not generated by any shift-invariant norm-summable interaction. On the other hand, we give a complete proof of an extension, suggested by Kozlov, of Kozlov's theorem to a characterization of positive continuous specifications on configuration spaces with arbitrary hard constraints. We also present an extended version of Sullivan's theorem. Aside from simplifying some of the arguments in the original proof, our new version of Sullivan's theorem applies in various settings not covered by the original proof. In particular, it applies when the support of the specification is the hard-core shift or the two-dimensional $q$-coloring shift for $q\geq 6$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源