论文标题

Hölder规律性和梯度估计由圆柱$α$稳定过程驱动的SDE的Hölder规律性和梯度估计值

Hölder regularity and gradient estimates Hölder regularity and gradient estimates for SDEs driven by cylindrical $α$-stable processes

论文作者

Chen, Zhen-Qing, Hao, Zimo, Zhang, Xicheng

论文摘要

我们建立了Hölder的规律性和梯度估算的解决方案的过渡分组到以下sde:$$ {\ rm d} x_t =σ(t,x_ {t-}){\ rm d} z_t} z_t+b(t,t+b(t,t,x_t,x_t){\ rm d} {\ rm d} $$ $(z_t)_ {t \ geq 0} $是$ d $ - 二维圆柱$α$ - 稳定过程,$α\ in(0,2)$,$σ(t,x):{\ \ mathbb r} r}^d \ otimes {\ mathbb r}^d $是有限的,可以测量,统一的非排效和Lipschitz在$ x $中连续$ x $在$ t $中,$ b(t,x):{\ mathbb r} $β$-Hölder连续$ x $在$ t $中连续$ t $,$β\在[0,1] $满足$α+β> 1 $的[0,1] $中。此外,我们还显示了$ x(t,x)$的分销密度的存在和规律性。我们的证明是基于Littlewood-Paley的理论。

We establish Hölder regularity and gradient estimates for the transition semigroup of the solutions to the following SDE: $$ {\rm d} X_t=σ(t, X_{t-}){\rm d} Z_t+b (t, X_t){\rm d} t,\ \ X_0=x\in{\mathbb R}^d, $$ where $( Z_t)_{t\geq 0}$ is a $d$-dimensional cylindrical $α$-stable process with $α\in (0, 2)$, $σ(t, x):{\mathbb R}_+\times{\mathbb R}^d\to{\mathbb R}^d\otimes{\mathbb R}^d$ is bounded measurable, uniformly nondegenerate and Lipschitz continuous in $x$ uniformly in $t$, and $b (t, x):{\mathbb R}_+\times{\mathbb R}^d\to{\mathbb R}^d$ is bounded $β$-Hölder continuous in $x$ uniformly in $t$ with $β\in[0,1]$ satisfying $α+β>1$. Moreover, we also show the existence and regularity of the distributional density of $X (t, x)$. Our proof is based on Littlewood-Paley's theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源