论文标题

生物膜:随机生化模型的多个规范参数估计系统

BioMETA: A multiple specification parameter estimation system for stochastic biochemical models

论文作者

Khalid, Arfeen

论文摘要

随机生物化学系统表现出的固有的行为变异使得它是人工专家手动分析它们的一项艰巨任务。此类系统的计算建模有助于研究和预测基本生化过程的行为,但同时介绍了几个未知参数的存在。在这种情况下,面临的关键挑战是确定这些未知参数的值针对已知的行为规格。到目前为止提出的解决方案估计给定模型的参数针对单个规范,而正确的模型有望满足使用一组参数值实例化时满足所有行为规格。我们提出了一种新方法Biometa来解决此问题,以使一组参数值会导致参数化的随机生化模型同时满足所有给定的概率的时间逻辑行为规格。我们的方法基于将基于多个假设测试的多个假设测试与模拟退火搜索相结合,以查找一组参数值,以便给定的参数化模型满足多个概率的行为规格。我们研究了两个基于随机规则的生化受体模型,即FC $ε$ RI和T细胞作为我们的基准测试,以评估所介绍方法的实用性。我们的实验结果成功估计了FC $ε$ RI的26美元参数和T型T-Cell受体模型的$ 29 $参数,每三个概率的时间逻辑行为规格。

The inherent behavioral variability exhibited by stochastic biochemical systems makes it a challenging task for human experts to manually analyze them. Computational modeling of such systems helps in investigating and predicting the behaviors of the underlying biochemical processes but at the same time introduces the presence of several unknown parameters. A key challenge faced in this scenario is to determine the values of these unknown parameters against known behavioral specifications. The solutions that have been presented so far estimate the parameters of a given model against a single specification whereas a correct model is expected to satisfy all the behavioral specifications when instantiated with a single set of parameter values. We present a new method, BioMETA, to address this problem such that a single set of parameter values causes a parameterized stochastic biochemical model to satisfy all the given probabilistic temporal logic behavioral specifications simultaneously. Our method is based on combining a multiple hypothesis testing based statistical model checking technique with simulated annealing search to look for a single set of parameter values so that the given parameterized model satisfies multiple probabilistic behavioral specifications. We study two stochastic rule-based models of biochemical receptors, namely, Fc$ε$RI and T-cell as our benchmarks to evaluate the usefulness of the presented method. Our experimental results successfully estimate $26$ parameters of Fc$ε$RI and $29$ parameters of T-cell receptor model against three probabilistic temporal logic behavioral specifications each.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源