论文标题

关于digraphs的总彩虹统治

On the total Rainbow domination of digraphs

论文作者

Xie, Zhihong

论文摘要

对于一个正整数$ k $,digraph $ d $上的$ k $ rainbow主导功能($ k $ rdf)是从顶点套装$ f $ from the the the the $ f $ from $ f $ to $ \ {1,2,\ ldots,\ ldots,k \} $ for vertex $ v $ v $ f fortex $ v $ f(v) $ \ bigCup_ {u \ in n^ - (v)} f(u)= \ {1,2,\ ldots,k \} $,其中$ n^ - (v)$是$ v $的neighbors集合。 $ k $ rdf $ f $的重量定义为$ \ sum_ {v \ in v(d)} | f(v)| $。 $ k $ rdf $ f $ in $ d $没有孤立的顶点称为$ k $ rainbow主导功能,如果套装$ \ {v \ in v(d):f(v):f(v)\ ne \ ne \ emptyset \} $的子数字$ d $的子数据被称为$ d $。总$ k $ - 李子弓的统治数是$ d $上$ k $ rainbow统治功能的最小重量。在本文中,我们为总$ k $ rainbow的统治编号建立了一些界限,并给出了总$ k $ - rainbow统治数量的一些挖掘机。

For a positive integer $k$, a $k$-rainbow dominating function ($k$RDF) on a digraph $D$ is a function $f$ from the vertex set $V(D)$ to the set of all subsets of $\{1,2,\ldots,k\}$ such that for any vertex $v$ with $f(v)=\emptyset$, $\bigcup_{u\in N^-(v)}f(u)=\{1,2,\ldots,k\}$, where $N^-(v)$ is the set of in-neighbors of $v$. The weight of a $k$RDF $f$ is defined as $\sum_{v\in V(D)}|f(v)|$. A $k$RDF $f$ on $D$ with no isolated vertex is called a total $k$-rainbow dominating function if the subdigraph of $D$ induced by the set $\{v\in V(D):f(v)\ne\emptyset\}$ has no isolated vertex. The total $k$-rainbow domination number is the minimum weight of a total $k$-rainbow dominating function on $D$. In this paper, we establish some bounds for the total $k$-rainbow domination number and we give the total $k$-rainbow domination number of some digraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源