论文标题
SVIRO:合成车辆内部后座占用数据集和基准测试
SVIRO: Synthetic Vehicle Interior Rear Seat Occupancy Dataset and Benchmark
论文作者
论文摘要
我们发布了SVIRO,这是一种合成数据集,用于乘客隔间中十种不同车辆的乘客隔室,以分析基于机器学习的方法,以实现其概括能力和可靠性的培训,以有限的变化(例如,相同的背景和纹理和纹理,几乎没有实例)。这与通用基准数据集的本质上很高的可变性相反,该数据集的重点是改善一般任务的最新技术。我们的数据集包含用于对象检测的边界框,实例分割掩码,姿势估计的关键点和每个合成风景的深度图像以及每个单独座椅进行分类的图像。我们用例的优点是双重的:在新的情况下,与现实的应用基准新方法的邻近性,同时将复杂性降低到更易于处理的环境中,以便可以在更具挑战性的数据集中测试应用程序和理论问题。数据和评估服务器可在https://sviro.kl.dfki.de下获得。
We release SVIRO, a synthetic dataset for sceneries in the passenger compartment of ten different vehicles, in order to analyze machine learning-based approaches for their generalization capacities and reliability when trained on a limited number of variations (e.g. identical backgrounds and textures, few instances per class). This is in contrast to the intrinsically high variability of common benchmark datasets, which focus on improving the state-of-the-art of general tasks. Our dataset contains bounding boxes for object detection, instance segmentation masks, keypoints for pose estimation and depth images for each synthetic scenery as well as images for each individual seat for classification. The advantage of our use-case is twofold: The proximity to a realistic application to benchmark new approaches under novel circumstances while reducing the complexity to a more tractable environment, such that applications and theoretical questions can be tested on a more challenging dataset as toy problems. The data and evaluation server are available under https://sviro.kl.dfki.de.