论文标题
在与多边形轮廓上的Wilson Loops的异常保形病房身份上
On anomalous conformal Ward identities for Wilson loops on polygon-like contours with circular edges
论文作者
论文摘要
我们在$ {\ cal n} = 4 $ sym wilson循环的多边形轮廓上得出异常的保形病房身份,并带有圆形弧形形成的边缘。通过合适的参数化选择,它们与局部相关函数的参数非常相似。他们的溶液具有共形的协变量因子,具体取决于角落的距离时,除了角落的交叉比,在尖角和角度以参数的轮廓扭转,根据角落的交叉比例,另一个不变的剩余因子。
We derive the anomalous conformal Ward identities for ${\cal N}=4$ SYM Wilson loops on polygon-like contours with edges formed by circular arcs. With a suitable choice of parameterisation they are very similarly to those for local correlation functions. Their solutions have a conformally covariant factor depending on the distances of the corners times a conformally invariant remainder factor depending, besides on cross ratios of the corners, on the cusp angles and angles parameterising the torsion of the contours.