论文标题
单位不变的估值和Tutte的序列
Unitarily invariant valuations and Tutte's sequence
论文作者
论文摘要
我们证明了FU的功率系列猜想,该猜想将复杂空间形式的等轴测数值代数与Tutte引入的组合功率系列的正式功率序列相关联。本系列的$ n $ th系数是三角形的三角形数量,内部边缘为$ 3N $;或Tamari晶格$ y_n $中的间隔数。
We prove Fu's power series conjecture which relates the algebra of isometry invariant valuations on complex space forms to a formal power series from combinatorics which was introduced by Tutte. The $n$-th coefficient of this series is the number of triangulations of a triangle with $3n$ internal edges; or the number of intervals in Tamari's lattice $Y_n$.