论文标题

NWPU-Crowd:一个大规模的基准,用于人群计数和本地化

NWPU-Crowd: A Large-Scale Benchmark for Crowd Counting and Localization

论文作者

Wang, Qi, Gao, Junyu, Lin, Wei, Li, Xuelong

论文摘要

在过去的十年中,由于其广泛的应用程序,包括人群监控,公共安全,空间设计等,人群的计数和本地化引起了研究人员的广泛关注。许多卷积神经网络(CNN)旨在解决此任务。但是,目前发布的数据集是如此小的规模,以至于无法满足受监督的基于CNN的算法的需求。为了解决这个问题,我们构建了一个大规模的拥挤人群计数和本地化数据集,NWPU-Crowd,由5,109张图像组成,总共有2,133,375个带有点和盒子的注释头。与其他实际数据集相比,它包含各种照明场景,并具有最大的密度范围(0〜2033)。此外,开发了一个基准网站,用于公正地评估不同的方法,该方法使研究人员可以提交测试集的结果。基于提出的数据集,我们进一步描述了数据特征,评估一些主流最新方法(SOTA)方法的性能,并分析在新数据上出现的新问题。更重要的是,在\ url {https://www.crowdbenchmark.com/}上部署基准,数据集/代码/模型/结果可在\ url {https://gjy3035.gith.github.io/nwpu-crowd-sample-sample-code/}上获得。

In the last decade, crowd counting and localization attract much attention of researchers due to its wide-spread applications, including crowd monitoring, public safety, space design, etc. Many Convolutional Neural Networks (CNN) are designed for tackling this task. However, currently released datasets are so small-scale that they can not meet the needs of the supervised CNN-based algorithms. To remedy this problem, we construct a large-scale congested crowd counting and localization dataset, NWPU-Crowd, consisting of 5,109 images, in a total of 2,133,375 annotated heads with points and boxes. Compared with other real-world datasets, it contains various illumination scenes and has the largest density range (0~20,033). Besides, a benchmark website is developed for impartially evaluating the different methods, which allows researchers to submit the results of the test set. Based on the proposed dataset, we further describe the data characteristics, evaluate the performance of some mainstream state-of-the-art (SOTA) methods, and analyze the new problems that arise on the new data. What's more, the benchmark is deployed at \url{https://www.crowdbenchmark.com/}, and the dataset/code/models/results are available at \url{https://gjy3035.github.io/NWPU-Crowd-Sample-Code/}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源