论文标题

基于区块链的RF驱动反向散射无线网络中的联合时间调度和交易费用选择

Joint Time Scheduling and Transaction Fee Selection in Blockchain-based RF-Powered Backscatter Cognitive Radio Network

论文作者

Anh, Tran The, Luong, Nguyen Cong, Xiong, Zehui, Niyato, Dusit, Kim, Dong In

论文摘要

在本文中,我们开发了一个称为基于区块链的射频(RF)的反向散射认知无线网络的新框架。在框架中,IoT设备作为二级发射机通过使用RF驱动的反向散射认知无线电技术将其传感数据传输到辅助网关。然后,将网关收集的数据发送到区块链网络以进行进一步验证,存储和处理。因此,该框架使IoT系统能够同时优化光谱使用情况并最大化能源效率。此外,该框架可确保以分散的方式但以可信赖的方式对从IoT设备收集的数据进行验证,存储和处理。为了实现目标,我们在主要通道的动力学,IOT设备的不确定性以及区块链环境的不可预测性下为网关提出了一个随机优化问题。在问题中,网关共同决定(i)时间安排时间,即,在IoT设备之间,(ii)区块链网络以及(iii)交易费率,以最大化网络,同时使成本最小化成本。为了解决随机优化问题,我们建议使用Dueling Double Deep Q-Networks(D3QN)采用,评估和评估深度强化学习(DRL),以得出网关的最佳策略。仿真结果清楚地表明,所提出的解决方案优于传统基线方法,例如传统的Q学习算法和非学习算法在网络吞吐量和收敛速度方面。此外,提出的解决方案保证数据以合理的成本存储在区块链网络中。

In this paper, we develop a new framework called blockchain-based Radio Frequency (RF)-powered backscatter cognitive radio network. In the framework, IoT devices as secondary transmitters transmit their sensing data to a secondary gateway by using the RF-powered backscatter cognitive radio technology. The data collected at the gateway is then sent to a blockchain network for further verification, storage and processing. As such, the framework enables the IoT system to simultaneously optimize the spectrum usage and maximize the energy efficiency. Moreover, the framework ensures that the data collected from the IoT devices is verified, stored and processed in a decentralized but in a trusted manner. To achieve the goal, we formulate a stochastic optimization problem for the gateway under the dynamics of the primary channel, the uncertainty of the IoT devices, and the unpredictability of the blockchain environment. In the problem, the gateway jointly decides (i) the time scheduling, i.e., the energy harvesting time, backscatter time, and transmission time, among the IoT devices, (ii) the blockchain network, and (iii) the transaction fee rate to maximize the network throughput while minimizing the cost. To solve the stochastic optimization problem, we then propose to employ, evaluate, and assess the Deep Reinforcement Learning (DRL) with Dueling Double Deep Q-Networks (D3QN) to derive the optimal policy for the gateway. The simulation results clearly show that the proposed solution outperforms the conventional baseline approaches such as the conventional Q-Learning algorithm and non-learning algorithms in terms of network throughput and convergence speed. Furthermore, the proposed solution guarantees that the data is stored in the blockchain network at a reasonable cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源