论文标题

基于键的基于债券的peri肌不会收敛到超弹性,因为地平线为零

Bond-based peridynamics does not converge to hyperelasticity as the horizon goes to zero

论文作者

Bellido, J. C., Cueto, J., Mora-Corral, C.

论文摘要

基于键的Peridyanics是固体力学中的非局部连续模型,其中通过涉及参考和变形配置中的几个点对的双积分来计算变形的能量。当地平线(粒子之间的最大相互作用距离)倾向于零时,该模型的γ限度已知,而极限事实证明是(经典)超弹性出现在Sobolev空间中的(局部)矢量变异问题。在本文中,我们在模型中强加了框架 - 差异和各向同性,并发现很少有热弹性功能是基于键的基于键的peridynanic模型的γ-限位。特别是,通过此限制程序,Mooney-Rivlin材料无法恢复。

Bond-based peridynamics is a nonlocal continuum model in Solid Mechanics in which the energy of a deformation is calculated through a double integral involving pairs of points in the reference and deformed configurations. It is known how to calculate the Γ-limit of this model when the horizon (maximum interaction distance between the particles) tends to zero, and the limit turns out to be a (local) vector variational problem defined in a Sobolev space, of the type appearing in (classical) hyperelasticity. In this paper, we impose frame-indifference and isotropy in the model and find that very few hyperelastic functionals are Γ-limits of the bond-based peridynamics model. In particular, Mooney-Rivlin materials are not recoverable through this limit procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源