论文标题

$ {\ cal o}(\ log(f))$ rounds的同步拜占庭式晶格协议

Synchronous Byzantine Lattice Agreement in ${\cal O}(\log (f))$ Rounds

论文作者

Di Luna, Giuseppe Antonio, Anceaume, Emmanuelle, Bonomi, Silvia, Querzoni, Leonardo

论文摘要

在Attiya等人最初提出的晶格协议(LA)问题中。 \ cite {attiya:1995},一组过程必须决定一个晶格链。更确切地说,每个正确的过程都提出了一个join-semi lattice $ l $的元素$ e $,并且必须决定包含$ e $的值。此外,任何一对$ p_i,正确的流程的p_j $都必须决定两个值$ dec_i $和$ dec_j $可比较的值(例如$ dec_i \ dec_i \ leq dec_j $或$ dec_j <dec_i $)。洛杉矶的实际应用已研究,例如,它可用于实现快照对象\ cite {attiya:1995}或具有交换操作的复制状态机\ cite \ cite {faleiro:2012}。有趣的是,对拜占庭晶格协议的研究直到最近才开始,它主要专门用于异步系统。同步案例一直是最近的预印\ cite {zheng:aa}的对象,其中Zheng等人。提出了一种算法,以$ {\ cal o}(\ sqrt f)$ rounds终止,并容忍$ f <\ lceil n/3 \ rceil $ byzantine流程。 在本文中,我们为同步案例提供了新的贡献。我们为具有独特ID的$ n $流程系统的通常消息传递模型调查了问题。我们首先证明,只有可用的经过身份验证的渠道,如果$ f = n/3 $或更多过程是拜占庭的,则无法解决问题。然后,我们提出了一种新颖的算法,该算法在具有签名(即{\ em认证的消息}模型)的同步系统模型中起作用,可容忍多达$ f $ byzantine Failures(其中$ f <n/3 $),并且该终止在$ {\ cal o}(\ log f f)中终止。我们讨论如何以算法弹性($ f <n/4 $)的价格删除身份验证的消息。最后,我们提出了一个变压器,该变压器将任何同步LA算法转换为同步概括晶格一致性的算法。

In the Lattice Agreement (LA) problem, originally proposed by Attiya et al. \cite{Attiya:1995}, a set of processes has to decide on a chain of a lattice. More precisely, each correct process proposes an element $e$ of a certain join-semi lattice $L$ and it has to decide on a value that contains $e$. Moreover, any pair $p_i,p_j$ of correct processes has to decide two values $dec_i$ and $dec_j$ that are comparable (e.g., $dec_i \leq dec_j$ or $dec_j < dec_i$). LA has been studied for its practical applications, as example it can be used to implement a snapshot objects \cite{Attiya:1995} or a replicated state machine with commutative operations \cite{Faleiro:2012}. Interestingly, the study of the Byzantine Lattice Agreement started only recently, and it has been mainly devoted to asynchronous systems. The synchronous case has been object of a recent pre-print \cite{Zheng:aa} where Zheng et al. propose an algorithm terminating in ${\cal O}(\sqrt f)$ rounds and tolerating $f < \lceil n/3 \rceil$ Byzantine processes. In this paper we present new contributions for the synchronous case. We investigate the problem in the usual message passing model for a system of $n$ processes with distinct unique IDs. We first prove that, when only authenticated channels are available, the problem cannot be solved if $f=n/3$ or more processes are Byzantine. We then propose a novel algorithm that works in a synchronous system model with signatures (i.e., the {\em authenticated message} model), tolerates up to $f$ byzantine failures (where $f<n/3$) and that terminates in ${\cal O}(\log f)$ rounds. We discuss how to remove authenticated messages at the price of algorithm resiliency ($f < n/4$). Finally, we present a transformer that converts any synchronous LA algorithm to an algorithm for synchronous Generalised Lattice Agreement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源