论文标题
jpeg域中的自然隐肌,线性开发管道
Natural Steganography in JPEG Domain with a Linear Development Pipeline
论文作者
论文摘要
为了实现高实用安全性,自然隐身志(NS)使用在ISO敏感性$ iso_ {1} $中捕获的封面图像,并生成模仿ISO敏感性$ ISO_ {2}> ISO_ {1} $的seTo tos图像。这是通过在模拟传感器光子噪声的盖上添加stego信号来实现的。本文提出了一种嵌入机制,通过在量化前明确计算DCT系数之间的相关性,以在线性开发后在JPEG结构域中执行NS。为了计算DCT域中光子噪声的协方差矩阵,我们首先开发了Demosaicking,Luminance平均,像素截面和2D-DCT的矩阵表示。为了解释$ 3 \ times 3 $ dct块之间相关性的起源,对所得协方差矩阵进行了详细分析。然后提出一个嵌入方案,以考虑所有相关性。它每个子晶格使用4个子晶格和64个晶格。然后,通过使用协方差矩阵的Cholesky分解来计算多元高斯分布的条件概率来得出每个DCT系数的修改概率。该推导还用于计算每个图像的嵌入能力。我们使用称为E1基础的特定数据库,我们表明,在JPEG域(J-COV-NS)中,可以实现高容量(超过2位每个非零AC DCT),并且具有高实用安全性($ p _ {\ Mathrm {e}}} \ simeq40 \%$ frof qf 75 to qf 100)。
In order to achieve high practical security, Natural Steganography (NS) uses cover images captured at ISO sensitivity $ISO_{1}$ and generates stego images mimicking ISO sensitivity $ISO_{2}>ISO_{1}$. This is achieved by adding a stego signal to the cover that mimics the sensor photonic noise. This paper proposes an embedding mechanism to perform NS in the JPEG domain after linear developments by explicitly computing the correlations between DCT coefficients before quantization. In order to compute the covariance matrix of the photonic noise in the DCT domain, we first develop the matrix representation of demosaicking, luminance averaging, pixel section, and 2D-DCT. A detailed analysis of the resulting covariance matrix is done in order to explain the origins of the correlations between the coefficients of $3\times3$ DCT blocks. An embedding scheme is then presented that takes in order to take into account all the correlations. It employs 4 sub-lattices and 64 lattices per sub-lattices. The modification probabilities of each DCT coefficient are then derived by computing conditional probabilities from the multivariate Gaussian distribution using the Cholesky decomposition of the covariance matrix. This derivation is also used to compute the embedding capacity of each image. Using a specific database called E1 Base, we show that in the JPEG domain NS (J-Cov-NS) enables to achieve high capacity (more than 2 bits per non-zero AC DCT) and with high practical security ($P_{\mathrm{E}}\simeq40\%$ using DCTR from QF 75 to QF 100).